

Information: Changes in Matter

Books are made of matter. You are made of matter. "<u>Matter</u>" is a fancy word for the "stuff" of which all objects are made. Every day, matter is changed in different ways. For example, paper can be changed in many ways—it can be torn, folded, or burned.

A <u>chemical change</u> is any alteration that changes the identity of matter. For example, by passing electricity through water it can be broken down into hydrogen and oxygen. Burning paper is a chemical change because after the change takes place, the paper has been changed into different substances (like ash, carbon dioxide, etc.).

A <u>physical change</u> is any alteration that does not change the identity of the matter. Shredding paper does not change the paper into a different substance. Dissolving salt in water is a physical change because after the change, the salt and water are both still there.

One more example: consider two *elements*—sodium and chlorine. Sodium is a metal so reactive that if you put a small piece of it in water, it will explode! Chlorine is a gas so toxic that it was used as a weapon in World War 1. If you put sodium metal and chlorine gas in the same container together all you have done is *mixed* them. Creating a *mixture* is a <u>physical change</u> because the original properties of explosiveness and toxicity are still there. But if you heat the container, you would see bright light and smoke. After the smoke clears you would notice white crystals coating the inside of the container. Those crystals are called sodium chloride—ordinary table salt! The explosive metal and the toxic chlorine have been <u>chemically changed</u>—instead of explosive and toxic, the resultant product is salty! That's a chemical change!

Critical Thinking Questions

- 1. Explain why each of the following is a physical change.
 - a) boiling water until no water remains
 - b) mixing sugar with coffee
- 2. Explain why each of the following is a chemical change.
 - a) a car rusting
 - b) food digesting

3.	Identify each of the following changes as chemical or physical by placing a C or P in each blank.						
	a) acid rain corroding the statue of liberty	d) melting steel					
	b) dissolving salt in water	e) dissolving steel in acid					
	c) boiling salt water until just salt remains	f) cracking ice					
or	mation: Flements Compounds Mixtures						

Information: Elements, Compounds, Mixtures

Examine the following tables. Following the name of each <u>element</u> or <u>compound</u> is the "chemical formula" of the element or compound; please see the periodic table for the meaning of some of the symbols (i.e. Na = sodium). *Italics* tell you that substance is <u>organic</u>.

Elements	Compounds
Sodium (Na)	Water (H ₂ O)
Chlorine (Cl)	Methane (CH ₄)
Carbon (C)	Sodium chloride, salt (NaCl)
Oxygen (O)	Carbon dioxide (CO ₂)
Hydrogen (H)	Hydrogen Peroxide (H ₂ O ₂)

Pure Substances	Mixtures
Salt (NaCl)	Salt water (NaCl and H ₂ O)
Hydrogen (H)	Sand
Carbon dioxide (CO ₂)	Hydrogen (H) and Oxygen (O)
Water (H ₂ O)	Sodium (Na) and Chlorine (Cl)
Aluminum (Al)	Kool-aid (sugar, water, etc.)

Critical Thinking Questions

4.]	How	are e	lements	different	from	compounds	?
-------------	-----	-------	---------	-----------	------	-----------	---

- 5. How are compounds different from mixtures?
- 6. How are pure substances different from mixtures?
- 7. Can something be both a mixture and a pure substance? Explain using examples from the tables.

8.		e to identify somethii king at it? Explain us	-	, compound, pure substance or om the tables.
9.	Formulate a definit a) element:	ion for each of the fo	llowing terms.	
	b) compound:			
	c) mixture:			
	d) pure substance:			
10.	_	_	-	nd, mixture, or pure substance. (You will need more than one
	a)	Popsicle	c)	Gold
	b)	Sugar	d)	Dishwater
11.	. If you have a conta or why not?	iner with hydrogen g	as and oxygen ga	as in it do you have water? Why
12.	Give an example of this sheet.	something that is an	element. Your e	example should not already be on
13.	Give an example of on this sheet.	something that is a c	compound. Your	example should not already be
14.	Give an example of this sheet.	something that is a 1	mixture. Your ex	ample should not already be on

15. Using the earlier table, what do all <u>organic</u> substances have in common?

Information: Homogeneous and Heterogeneous Mixtures

Examine the following table.

Example of Mixture	# of phases in	How many kinds of	Homogeneous or
	mixture	states in mixture	heterogeneous?
Salt water	1	2	Homogeneous
Oil and water	2	1	Heterogeneous
Sugar and salt (no water)	2	1	Heterogeneous
Sugar and salt in water	1	2	Homogeneous
Sand and water	2	2	Heterogeneous
Carbon dioxide, water, and ice	3	3	Heterogeneous
14 kt. gold (mixture of silver	1	1	Homogeneous
and gold)			

Critical Thinking Questions

16	. What is the d	lifference l	between a	"phase	of matter"	and a '	'state of n	natter"?	Define ea	ch
	term as best y	you can.								

17.	What relationship	exists between	a homogeneous	mixture a	nd the	number	of phase	es in
	the mixture?							

18. What is the difference betw	veen homogeneous and	l heterogeneous mix	tures?
---------------------------------	----------------------	---------------------	--------

- 19. If you had to categorize elements as homogeneous or heterogeneous, what category would you put them in?
- 20. If you had to categorize compounds as homogeneous or heterogeneous, what category would you put them in?

21. Categorize each of the following as homogeneous (homo) or heterogeneous (hetero).							
a) salad	b) ice water	c) dishwater	d) 14 kt. Gold				