Unit 8: Gas Chemistry

Learning Targets

1. Provide atomic and molecular explanations and graphic representations for pressure-volumetemperature relationships in gases.

- I can recognize a graph of volume vs. temperature
- I can recognize a graph of pressure vs. temperature
- I can recognize a graph of volume vs. pressure

2. Explain changes in pressure, volume, and temperature for gases using the kinetic molecular model (ie, motions of molecules).

- I can use the combined gas law $\left(\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}\right)$ to calculate changing pressures, volumes, or temperatures.
- I can explain the origin of absolute zero and the Kelvin temperature scale.

3. Calculate the moles of gas present given the temperature, volume, and pressure using the ideal gas law: $\mathrm{PV}=\mathrm{nRT}$

- I can state the value of $\mathrm{R}=8.31 \frac{\mathrm{kPa} \cdot \mathrm{L}}{\mathrm{mol} \cdot \mathrm{K}}$
- I know that $\mathrm{n}=\underline{\text { number }}$ of moles

4. Use the ideal gas law to find the molar volume of a gas.

- I can explain why $\mathrm{n}=1$ for molar volume
- I can use MVP=mRT to find mass and molar mass of a gas.

5. Explain how to collect gas over water.

- I can use a standard vapor pressure table to correct for water vapor.
- I can use corrected "dry" pressures in the gas law equations.

6. Use stoichiometry to predict volumes of product gases during chemical equations at the same temperature and pressure.

- Given the volumes of reactants, I can calculate the volume of products.
- I can convert between grams of reactants/products and liters.

7. Use Graham's Law of Diffusion to calculate speeds of gas molecules.

- When given the speed of one gas, I can find the speed of a $2^{\text {nd }}$ one.

8. Explain the differences between "ideal" gases and "real" ones.

- I can state that "ideal" gases are when we ignore intermolecular forces.
- I can explain under what conditions ignoring the intermolecular forces is not valid.

